5. Surface Chemistry

Some of the most important chemicals are produced industrially by means of reactions that occur on the surfaces of solid catalysts.

Surface chemistry deals with phenomena that occur at the surfaces or interfaces. The interface or surface is represented by separating the bulk phases by a hyphen or a slash. For example, the interface between a solid and a gas may be represented by solid-gas or solid/gas. Due to complete miscibility, there is nointerface between the gases. The bulk phases that we come across in surface chemistry may be pure compounds or solutions. The interface is normally a few molecules thick but its area depends on the size of the particles of bulk phases. Many important phenomena, noticeable amongst these being corrosion, electrode processes, heterogeneous catalysis, dissolution and crystallisation occur at interfaces. The subject of surface chemistry finds many applications in industry, analytical work and daily life situations.

To accomplish surface studies meticulously, it becomes imperative to have a really clean surface. Under very high vacuum of the order of 10–8 to 10–9 pascal, it is now possible to obtain ultra clean surface of the metals. Solid materials with such clean surfaces need to be stored in vacuum otherwise these will be covered by molecules of the major components of air namely dioxygen and dinitrogen.

In this Unit, you will be studying some important features of surface chemistry such as adsorption, catalysis and colloids including emulsions and gels.

5.1 Adsorption

There are several examples, which reveal that the surface of a solid has the tendency to attract and retain the molecules of the phase with which it comes into contact. These molecules remain only at the surface and do not go deeper into the bulk. The accumulation of molecular species at the surface rather than in the bulk of a solid or liquid is termed adsorption. The molecular species or substance, which concentrates or accumulates at the surface is termed adsorbate and the material on the surface of which the adsorption takes place is called adsorbent. Adsorption is essentially a surface phenomenon. Solids, particularly in finely divided state, have large surface area and therefore, charcoal, silica gel, alumina gel, clay, colloids, metals in finely divided state, etc. act as good adsorbents.

Adsorption in action

(i) If a gas like O2, H2, CO, Cl2, NH3 or SO2 is taken in a closed vessel containing powdered charcoal, it is observed that the pressure of the gas in the enclosed vessel decreases. The gas molecules concentrate at the surface of the charcoal, i.e., gases are adsorbed at the surface.
(ii) In a solution of an organic dye, say methylene blue, when animal charcoal is added and the solution is well shaken, it is observed that the filtrate turns colourless. The molecules of the dye, thus, accumulate on the surface of charcoal, i.e., are adsorbed.
(iii) Aqueous solution of raw sugar, when passed over beds of animal charcoal, becomes colourless as the colouring substances are adsorbed by the charcoal.
(iv) The air becomes dry in the presence of silica gel because the water molecules get adsorbed on the surface of the gel. It is clear from the above examples that solid surfaces can hold the gas or liquid molecules by virtue of adsorption. The process of removing an adsorbed substance from a surface on which it is adsorbed is called desorption.

5.1.1 Distinction between Adsorption and Absorption

In adsorption, the substance is concentrated only at the surface and does not penetrate through the surface to the bulk of the adsorbent, while in absorption, the substance is uniformly distributed throughout the bulk of the solid. For example, when a chalk stick is dipped in ink, the surface retains the colour of the ink due to adsorption of coloured molecules while the solvent of the ink goes deeper into the stick due to absorption. On breaking the chalk stick, it is found to be white from inside. A distinction can be made between absorption and adsorption by taking an example of water vapour. Water vapours are absorbed by anhydrous calcium chloride but adsorbed by silica gel. In other words, in adsorption the concentration of the adsorbate increases only at the surface of the adsorbent, while in absorption the concentration is uniform throughout the bulk of the solid.

Both adsorption and absorption can take place simultaneously also. The term sorption is used to describe both the processes.

5.1.2 Mechanism of Adsorption

Adsorption arises due to the fact that the surface particles of the adsorbent are not in the same environment as the particles inside the bulk. Inside the adsorbent all the forces acting between the particles are mutually balanced but on the surface the particles are not surrounded by atoms or molecules of their kind on all sides, and hence they possess unbalanced or residual attractive forces. These forces of the adsorbent are responsible for attracting the adsorbate particles on its surface.The extent of adsorption increases with the increase of surface area per unit mass of the adsorbent at a given temperature and pressure.

Another important factor featuring adsorption is the heat of adsorption. During adsorption, there is always a decrease in residual forces of the surface, i.e., there is decrease in surface energy which appears as heat. Adsorption, therefore, is invariably an exothermic process. In other words, ΔH of adsorption is always negative. When a gas is adsorbed, the freedom of movement of its molecules become restricted. This amounts to decrease in the entropy of the gas after adsorption, i.e., ΔS is negative. Adsorption is thus accompanied by decrease in enthalpy as well as decrease in entropy of the system. For a process to be spontaneous, the thermodynamic requirement is that, at constant temperature and pressure, ΔG must be negative, i.e., there is a decrease in Gibbs energy. On the basis of equation, ΔG = ΔH – TΔS, ΔG can be negative if ΔH has sufficiently high negative value as – TΔS is positive. Thus, in an adsorption process, which is spontaneous, a combination of these two factors makes ΔG negative. As the adsorption proceeds, ΔH becomes less and less negative ultimately ΔH becomes equal to TΔS and ΔG becomes zero. At this state equilibrium is attained.

5.1.3 Types of Adsorption

There are mainly two types of adsorption of gases on solids. If accumulation of gas on the surface of a solid occurs on account of weak van der Waals’ forces, the adsorption is termed as physical adsorption or physisorption. When the gas molecules or atoms are held to the solid surface by chemical bonds, the adsorption is termed chemical adsorption or chemisorption. The chemical bonds may be covalent or ionic in nature. Chemisorption involves a high energy of activation and is, therefore, often referred to as activated adsorption. Sometimes these two processes occur simultaneously and it is not easy to ascertain the type of adsorption. A physical adsorption at low temperature may pass into chemisorption as the temperature is increased. For example, dihydrogen is first adsorbed on nickel by vander Waals’ forces. Molecules of hydrogen then dissociate to form hydrogen atoms which are held on the surface by chemisorption.

Some of the important characteristics of both types of adsorption are described below:

Characteristics of physisorption

(i) Lack of specificity: A given surface of an adsorbent does not show any preference for a particular gas as the van der Waals’ forces are universal.

(ii) Nature of adsorbate: The amount of gas adsorbed by a solid depends on the nature of gas. In general, easily liquefiable gases (i.e., with higher critical temperatures) are readily adsorbed as van der Waals’ forces are stronger near the critical temperatures. Thus, 1g of activated charcoal adsorbs more sulphur dioxide (critical temperature 630K), than methane (critical temperature 190K) which is still more than 4.5 mL of dihydrogen (critical temperature 33K).

(iii) Reversible nature: Physical adsorption of a gas by a solid is generally reversible. Thus,
Solid + Gas l Gas/Solid + Heat

More of gas is adsorbed when pressure is increased as the volume of the gas decreases (Le–Chateliers’s principle) and the gas can be removed by decreasing pressure. Since the adsorption process is exothermic, the physical adsorption occurs readily at low temperature and decreases with increasing temperature
(Le-Chatelier’s principle).

(iv) Surface area of adsorbent: The extent of adsorption increases with the increase of surface area of the adsorbent. Thus, finely divided metals and porous substances having large surface areas are good adsorbents.

(v) Enthalpy of adsorption: No doubt, physical adsorption is an exothermic process but its enthalpy of adsorption is quite low (20–40 kJ mol-1). This is because the attraction between gas molecules and solid surface is only due to weak van der Waals’ forces.

Characteristics of chemisorption

(i) High specificity: Chemisorption is highly specific and it will only occur if there is some possibility of chemical bonding between adsorbent and adsorbate. For example, oxygen is adsorbed on metals by virtue of oxide formation and hydrogen is adsorbed by transition metals due to hydride formation.

(ii) Irreversibility: As chemisorption involves compound formation, it is usually irreversible in nature. Chemisorption is also an exothermic process but the process is very slow at low temperatures on account of high energy of activation. Like most chemical changes, adsorption often increases with rise of temperature. Physisorption of a gas adsorbed at low temperature may change into chemisorption at a high temperature. Usually high pressure is also favourable for chemisorption.

(iii) Surface area: Like physical adsorption, chemisorption also increases with increase of surface area of the adsorbent.

(iv) Enthalpy of adsorption: Enthalpy of chemisorption is high (80-240 kJ mol-1) as it involves chemical bond formation.

Table 5.1: Comparison of Physisorption and Chemisorption
Physisorption Chemisorption
1. It arises because of van der Waals’ forces. 1. It is caused by chemical bond formation.
2. It is not specific in nature. 2. It is highly specific in nature.
3. It is reversible in nature. 3. It is irreversible.
4. It depends on the nature of gas. More easily liquefiable gases are adsorbed readily. 4. It also depends on the nature of gas. Gases which can react with the adsorbent show chemisorption.
5. Enthalpy of adsorption is low (20-40 kJ mol-1 )in this case. 5. Enthalpy of adsorption is high (80-240 kJ mol-1) in this case.
6. Low temperature is favourable for adsorption. It decreases with increase of temperature 6. High temperature is favouable for absorption. It increases with the increase of temperature.
7. No appreciable activation energy is needed. 7. High activation energy is sometimes needed.
8. It depends on the surface area. It increases with an increase of surface area. 8. It also depends on the surface area. It too increases with an increase of surface area.
9. It results into multimolecular layers on adsorbent surface under high pressure. 9. It results into unimolecular layer.

5.1.4 Adsorption Isotherms

The variation in the amount of gas adsorbed by the adsorbent with pressure at constant temperature can be expressed by means of a curve termed as adsorption isotherm.

Freundlich adsorption isotherm: Freundlich, in 1909, gave an empirical relationship between the quantity of gas adsorbed by unit mass of solid adsorbent and pressure at a particular temperature. The relationship can be expressed by the following equation:
x/m = k.p1/n(n>1)………………………(5.1)

where x is the mass of the gas adsorbed on mass m of the adsorbent at pressure P, k and n are constants which depend on the nature of the adsorbent and the gas at a particular temperature. The relationship is generally represented in the form of a curve where mass of the gas adsorbed per gram of the adsorbent is plotted against pressure (Fig. 5.1). These curves indicate that at a fixed pressure, there is a decrease in physical adsorption with increase in temperature. These curves always seem to approach saturation at high pressure.
Taking logarithm of eq. (5.1)

log x/m = log k+ 1/n log p………………………..(5.2)

The validity of Freundlich isotherm can beverified by plotting log x/m on y-axis (ordinate) and log P on x-axis (abscissa). If it comes to be a straight line, the Freundlich isotherm is valid, otherwise not (Fig. 5.2). The slope of the straight line gives the value of 1/n. The intercept on the y-axis gives the value of log k.
Freundlich isotherm explains the behaviour of adsorption in an approximate manner. The factor 1/n can have values between 0 and 1 (probable range 0.1 to 0.5). Thus, equation (5.2) holds good over a limited range of pressure. when 1/n = 0,x/m = constant, the adsorption is independent of pressure. When 1/n = 1,x/m = k P, i.e. x/m ∝ P, the adsorption varies directly with pressure. Both the conditions are supported by experimental results. The experimental isotherms always seem to approach saturation at high pressure. This cannot be explained by Freundlich isotherm. Thus, it fails at high pressure.

5.1.5 Adsorption from Solution Phase

Solids can adsorb solutes from solutions also. When a solution of acetic acid in water is shaken with charcoal, a part of the acid is adsorbed by the charcoal and the concentration of the acid decreases in the solution. Similarly, the litmus solution when shaken with charcoal becomes colourless. The precipitate of Mg(OH)2 attains blue colour when precipitated in presence of magneson reagent. The colour is due to adsorption of magneson. The following observations have been made in the case of adsorption from solution phase:
(i) The extent of adsorption decreases with an increase in temperature.
(ii) The extent of adsorption increases with an increase of surface area of the adsorbent.
(iii) The extent of adsorption depends on the concentration of the solute in solution.
(iv) The extent of adsorption depends on the nature of the adsorbent and the adsorbate.
The precise mechanism of adsorption from solution is not known. Freundlich’s equation approximately describes the behaviour of adsorption from solution with a difference that instead of pressure, concentration of the solution is taken into account, i.e.,
x/m = k C1/n…………………(5.3)
(C is the equilibrium concentration, i.e., when adsorption is complete).
On taking logarithm of the above equation, we have
logx/m = logk + 1/n logC ……………….(5.4)

Plotting log x/m against log C a straight line is obtained which shows the validity of Freundlich isotherm. This can be tested experimentally by taking solutions of different concentrations of acetic acid. Equal volumes of solutions are added to equal amounts of charcoal in different flasks. The final concentration is determined in each flask after adsorption. The difference in the initial and final concentrations give the value of x. Using the above equation, validity of Freundlich isotherm can be established.

5.1.6 Applications of Adsorption

The phenomenon of adsorption finds a number of applications. Important ones are listed here:
(i) Production of high vacuum: The remaining traces of air can be adsorbed by charcoal from a vessel evacuated by a vacuum pump to give a very high vacuum.
(ii) Gas masks: Gas mask (a device which consists of activated charcoal or mixture of adsorbents) is usually used for breathing in coal mines to adsorb poisonous gases.
(iii) Control of humidity: Silica and aluminium gels are used as adsorbents for removing moisture and controlling humidity.
(iv) Removal of colouring matter from solutions: Animal charcoal removes colours of solutions by adsorbing coloured impurities.
(v) Heterogeneous catalysis: Adsorption of reactants on the solid surface of the catalysts increases the rate of reaction. There are many gaseous reactions of industrial importance involving solid catalysts. Manufacture of ammonia using iron as a catalyst, manufacture of H2SO4 by contact process and use of finely divided nickel in the hydrogenation of oils are excellent examples of heterogeneous catalysis.
(vi) Separation of inert gases: Due to the difference in degree of adsorption of gases by charcoal, a mixture of noble gases can be separated by adsorption on coconut charcoal at different temperatures.
(vii) In curing diseases: A number of drugs are used to kill germs by getting adsorbed on them.
(viii) Froth floatation process: A low grade sulphide ore is concentrated by separating it from silica and other earthy matter by this method using pine oil and frothing agent (see Unit 6).
(ix) Adsorption indicators: Surfaces of certain precipitates such as silver halides have the property of adsorbing some dyes like eosin, fluorescein, etc. and thereby producing a characteristic colour at the end point.
(x) Chromatographic analysis: Chromatographic analysis based on the phenomenon of adsorption finds a number of applications in analytical and industrial fields.

Intext Questions
5.1 Write any two characteristics of Chemisorption.
5.2 Why does physisorption decrease with the increase of temperature?
5.3 Why are powdered substances more effective adsorbents than their crystalline forms?

5.2 Catalysis

Potassium chlorate, when heated strongly decomposes slowly giving dioxygen. The decomposition occurs in the temperature range of 653-873K.
2KClO3 → 2KCl + 3O2
However, when a little of manganese dioxide is added, the decomposition takes place at a considerably lower temperature range, i.e., 473-633K and also at a much accelerated rate. The added manganese dioxide remains unchanged with respect to its mass and composition. In a similar manner, the rates of a number of chemical reactions can be altered by the mere presence of a foreign substance.

The systematic study of the effect of various foreign substances on the rates of chemical reactions was first made by Berzelius, in 1835. He suggested the term catalyst for such substances. Substances, which alter the rate of a chemical reaction and themselves remain chemically and quantitatively unchanged after the reaction, are known as catalysts, and the phenomenon is known as catalysis. You have already studied about catalysts and its functioning in Section 4.5.

Promoters and poisons

Promoters are substances that enhance the activity of a catalyst while poisons decrease the activity of a catalyst. For example, in Haber’s process for manufacture of ammonia, molybdenum acts as a promoter for iron which is used as a catalyst.

Catalysis can be broadly divided into two groups:

5.2.1 Homogeneous and Heterogeneous Catalysis

(a) Homogeneous catalysis

When the reactants and the catalyst are in the same phase (i.e.,liquid or gas), the process is said to be homogeneous catalysis. The following are some of the examples of homogeneous catalysis:

(i) Oxidation of sulphur dioxide into sulphur trioxide with dioxygen in the presence of oxides of nitrogen as the catalyst in the lead chamber process.

The reactants, sulphur dioxide and oxygen, and the catalyst, nitric oxide, are all in the same phase.

(ii) Hydrolysis of methyl acetate is catalysed by H+ ions furnished by hydrochloric acid.

Both the reactants and the catalyst are in the same phase.

(iii) Hydrolysis of sugar is catalysed by H+ ions furnished by sulphuric acid.

Both the reactants and the catalyst are in the same phase.

(b) Heterogeneous catalysis

The catalytic process in which the reactants and the catalyst are in different phases is known as heterogeneous catalysis. Some of the examples of heterogeneous catalysis are given below:

(i) Oxidation of sulphur dioxide into sulphur trioxide in the presence of Pt.

The reactant is in gaseous state while the catalyst is in the solid state.

(ii) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron in Haber’s process.

The reactants are in gaseous state while the catalyst is in the solid state.

(iii) Oxidation of ammonia into nitric oxide in the presence of platinum gauze in Ostwald’s process.

The reactants are in gaseous state while the catalyst is in the solid state.

(iv) Hydrogenation of vegetable oils in the presence of finely divided nickel as catalyst.

One of the reactants is in liquid state and the other in gaseous state while the catalyst is in the solid state.

5.2.2 Adsorption Theory of Heterogeneous Catalysis

This theory explains the mechanism of heterogeneous catalysis. The old theory, known as adsorption theory of catalysis, was that the reactants in gaseous state or in solutions, are adsorbed on the surface of the solid catalyst. The increase in concentration of the reactants on the surface increases the rate of reaction. Adsorption being an exothermic process, the heat of adsorption is utilised in enhancing the rate of the reaction.

The catalytic action can be explained in terms of the intermediate compound formation, the theory of which you have already studied in Section 4.5.1

The modern adsorption theory is the combination of intermediate compound formation theory and the old adsorption theory. The catalytic activity is localised on the surface of the catalyst. The mechanism involves five steps:
(i) Diffusion of reactants to the surface of the catalyst.
(ii) Adsorption of reactant molecules on the surface of the catalyst.
(iii) Occurrence of chemical reaction on the catalyst’s surface through formation of an intermediate (Fig. 5.3).
(iv) Desorption of reaction products from the catalyst surface, and thereby,making the surface available again for more reaction to occur.
(v) Diffusion of reaction products away from the catalyst’s surface.
The surface of the catalyst unlike the inner part of the bulk, has free valencies which provide the seat for chemical forces of attraction. When a gas comes in contact with such a surface, its molecules are held up there due to loose chemical combination. If different molecules are adsorbed side by side, they may react with each other resulting in the formation of new molecules. Thus, formed molecules may evaporate leaving the surface for the fresh reactant molecules.

This theory explains why the catalyst remains unchanged in mass and chemical composition at the end of the reaction and is effective even in small quantities. It however, does not explain the action of catalytic promoters and catalytic poisons.

Important features of solid catalysts

(a) Activity

The activity of a catalyst depends upon the strength of chemisorption to a large extent. The reactants must get adsorbed reasonably strongly on to the catalyst to become active. However, they must not get adsorbed so strongly that they are immobilised and other reactants are left with no space on the catalyst’s surface for adsorption. It has been found that for hydrogenation reaction, the catalytic activity increases from Group 5 to Group 11 metals with maximum activity being shown by groups 7-9 elements of the periodic table (Class XI, Unit 3).

(b) Selectivity

The selectivity of a catalyst is its ability to direct a reaction to yield a particular product. For example, starting with H2 and CO, and using different catalysts, we get different products.

Thus, it can be inferred that the action of a catalyst is highly selective in nature, i.e., a given substance can act as a catalyst only in a particular reaction and not for all the reactions. It means that a substance which acts as a catalyst in one reaction may fail to catalyse another reaction.

5.2.3 Shape- Selective Catalysis by Zeolites

The catalytic reaction that depends upon the pore structure of the catalyst and the size of the reactant and product molecules is called shape-selective catalysis. Zeolites are good shape-selective catalysts because of their honeycomb-like structures. They are microporous aluminosilicates with three dimensional network of silicates in which some silicon atoms are replaced by aluminium atoms giving Al–O–Si framework. The reactions taking place in zeolites depend upon the size and shape of reactant and product molecules as well as upon the pores and cavities of the zeolites. They are found in nature as well as synthesised for catalytic selectivity.

Zeolites are being very widely used as catalysts in petrochemical industries for cracking of hydrocarbons and isomerisation. An important zeolite catalyst used in the petroleum industry is ZSM-5. It converts alcohols directly into gasoline (petrol) by dehydrating them to give a mixture of hydrocarbons.

5.2.4 Enzyme Catalysis

Enzymes are complex nitrogenous organic compounds which are produced by living plants and animals. They are actually protein molecules of high molecular mass and form colloidal solutions in water. They are very effective catalysts; catalyse numerous reactions, especially those connected with natural processes. Numerous reactions that occur in the bodies of animals and plants to maintain the life process are catalysed by enzymes. The enzymes are, thus, termed as biochemical catalysts and the phenomenon is known as biochemical catalysis. Many enzymes have been obtained in pure crystalline state from living cells. However, the first enzyme was synthesised in the laboratory in 1969.
The following are some of the examples of enzyme-catalysed reactions:
(i) Inversion of cane sugar: The invertase enzyme converts cane sugar into glucose and fructose.

(ii) Conversion of glucose into ethyl alcohol: The zymase enzyme converts glucose into ethyl alcohol and carbon dioxide.

(iii) Conversion of starch into maltose: The diastase enzyme converts starch into maltose.

(iv) Conversion of maltose into glucose: The maltase enzyme converts maltose into glucose.

(v) Decomposition of urea into ammonia and carbon dioxide: The enzyme urease catalyses this decomposition.

(vi) In stomach, the pepsin enzyme converts proteins into peptides while in intestine, the pancreatic trypsin converts proteins into amino acids by hydrolysis.

(vii) Conversion of milk into curd: It is an enzymatic reaction brought about by lacto bacilli enzyme present in curd.

Table 5.2: Some Enzymatic Reactions
Enzyme Source Enzymatic Reactions
Invertase yeast Sucrose → Glucose and fructose
Zymase Yeast Starch → Maltose
Diastase Malt Starch → Maltose
Maltase Yeast Maltose → Glucose
Urease Soyabean Urea rarr; Ammonia and carbon dioxide
pepsin Stomach Proteins → Amino acids

Characteristics of enzyme catalysis

Enzyme catalysis is unique in its efficiency and high degree of specificity.
The following characteristics are exhibited by enzyme catalysts:
(i) Most highly efficient: One molecule of an enzyme may transform one million molecules of the reactant per minute.
(ii) Highly specific nature: Each enzyme is specific for a given reaction, i.e., one catalyst cannot catalyse more than one reaction. For example, the enzyme urease catalyses the hydrolysis of urea only. It does not catalyse hydrolysis of any other amide.
(iii) Highly active under optimum temperature: The rate of an enzyme reaction becomes maximum at a definite temperature, called the optimum temperature. On either side of the optimum temperature, the enzyme activity decreases. The optimum temperature range for enzymatic activity is 298-310K. Human body temperature being 310 K is suited for enzyme-catalysed reactions.
(iv) Highly active under optimum pH: The rate of an enzyme-catalysed reaction is maximum at a particular pH called optimum pH, which is between pH values 5-7.
(v) Increasing activity in presence of activators and co-enzymes: The enzymatic activity is increased in the presence of certain substances, known as co-enzymes. It has been observed that when a small non-protein (vitamin) is present along with an enzyme, the catalytic activity is enhanced considerably. Activators are generally metal ions such as Na+, Mn2+, Co2+, Cu2+, etc. These metal ions, when weakly bonded to enzyme molecules, increase their catalytic activity. Amylase in presence of sodium chloride i.e., Na+ ions are catalytically very active.
(vi) Influence of inhibitors and poisons: Like ordinary catalysts, enzymes are also inhibited or poisoned by the presence of certain substances. The inhibitors or poisons interact with the active functional groups on the enzyme surface and often reduce or completely destroy the catalytic activity of the enzymes. The use of many drugs is related to their action as enzyme inhibitors in the body.

Mechanism of enzyme catalysis

There are a number of cavities present on the surface of colloidal particles of enzymes. These cavities are of characteristic shape and possess active groups such as -NH2, -COOH, -SH, -OH, etc. These are actually the active centers on the surface of enzyme particles. The molecules of the reactant (substrate), which have complementary shape, fit into these cavities just like a key fits into a lock. On account of the presence of Products active groups, an activated complex is formed which then decomposes to yield the products.
Thus, the enzyme-catalysed reactions may be considered to proceed in two steps.

Step 1: Binding of enzyme to substrate to form an activated complex.
E + S → ES

Step 2: Decomposition of the activated complex to form product
ES→E + S

5.2.5 Catalysts in Industry

Some of the important technical catalytic processes are listed in Table 5.3 to give an idea about the utility of catalysts in industries.

Table 5.3: Some Industrial Catalytic Processes
Process Catalyst
1.Haber’s process for the manufacture of ammonia
N2(g) + 3H2(g) → 2NH3(g)
Finely divided iron, molybdenum as promoter; conditions: 200 bar pressure and 723-773K temperature. Now-a-days, a mixture of iron oxide, potassium oxide and alumina is used.
2. Ostwald’s process for the manufacture of nitric acid.
4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)
2NO(g) + O2(g) → 2NO2(g)
4NO2(g) + 2H2O(l) + O2(g) → 4HNO3(aq)
Platinised asbestos; temperature 573K.
3. Contact process for the manufacture of sulphuric acid.
2SO2(g) + O2(g) → 2SO3(g)
SO3(g) + H2SO4(aq) → H2S2O7(l)
                  oleum
H2S2O7(l) + H2O(l) → 2H2SO4(aq)
Platinised asbestos or vanadium pentoxide (V2O5);temperature 673-723K.

Intext Question

5.4 In Haber’s process, hydrogen is obtained by reacting methane with steam in presence of NiO as catalyst. The process is known as steam reforming. Why is
it necessary to remove CO when ammonia is obtained by Haber’s process?
5.5 Why is the ester hydrolysis slow in the beginning and becomes faster after sometime?
5.6 What is the role of desorption in the process of catalysis.

5.3 Colloids

We have learnt in Unit 2 that solutions are homogeneous systems. We also know that sand in water when stirred gives a suspension, which slowly settles down with time. Between the two extremes of suspensions and solutions we come across a large group of systems called colloidal dispersions or simply colloids.

A colloid is a heterogeneous system in which one substance is dispersed (dispersed phase) as very fine particles in another substance called dispersion medium.

The essential difference between a solution and a colloid is that of particle size. While in a solution, the constituent particles are ions or small molecules, in a colloid, the dispersed phase may consist of particles of a single macromolecule (such as protein or synthetic polymer) or an aggregate of many atoms, ions or molecules. Colloidal particles are larger than simple molecules but small enough to remain suspended. Their range of diameters is between 1 and 1000 nm (10–9 to 10–6 m).

Colloidal particles have an enormous surface area per unit mass as a result of their small size. Consider a cube with 1 cm side. It has a total surface area of 6 cm2. If it were divided equally into 1012 cubes, the cubes would be the size of large colloidal particles and have a total surface area of 60,000 cm2 or 6 m2. This enormous surface area leads to some special properties of colloids to be discussed later in this Unit.

5.4 Classification of colloids

Colloids are classified on the basis of the following criteria:
(i) Physical state of dispersed phase and dispersion medium
(ii) Nature of interaction between dispersed phase and dispersion medium
(iii) Type of particles of the dispersed phase.

5.4.1 Classification Based on Physical State of Dispersed Phase and Dispersion Medium

Depending upon whether the dispersed phase and the dispersion medium are solids, liquids or gases, eight types of colloidal systems are possible. A gas mixed with another gas forms a homogeneous mixture and hence is not a colloidal system. The examples of the various types of colloids along with their typical names are listed in Table 5.4.

Table 5.1: Comparison of Physisorption and Chemisorption
Dispersed phase Dispersion medium Type of collide Examples
Solid Solid Solid Sol Some colored glasses and gem stones
Solid Liquid Sol paints , cell fluids
Solid Gas Aerosol Smoke, dust
LiQuid Solid Gel Cheese, butter, jellies
Liquid Liquid Emulsion Milk , hair cream
Liquid Gas Aerosol Fog, Mist, Cloud, insecticide sprays
Gas Solid Solid Sol Pumice Stone, Foam Rubber
Gas Liquid Foam Froth, whipped cream, soap lather

Many familiar commercial products and natural objects are colloids. For example, whipped cream is a foam, which is a gas dispersed in a liquid. Firefighting foams, used at emergency airplane landings are also colloidal systems. Most biological fluids are aqueous sols (solids dispersed in water). Within a typical cell, proteins and nucleic acids are colloidal-sized particles dispersed in an aqueous solution of ions and small molecules.

Out of the various types of colloids given in Table 5.4, the most common are sols (solids in liquids), gels (liquids in solids) and emulsions (liquids in liquids). However, in the present Unit, we shall take up discussion of the ‘sols’ and ‘emulsions’ only. Further, it may be mentioned that if the dispersion medium is water, the sol is called aquasol or hydrosol and if the dispersion medium is alcohol, it is called alcosol and so on.

5.4.2 Classification Based on Nature of Interaction between Dispersed Phase and Dispersion Medium

Depending upon the nature of interaction between the dispersed phase and the dispersion medium, colloidal sols are divided into two categories, namely, lyophilic (solvent attracting) and lyophobic (solvent repelling). If water is the dispersion medium, the terms used are hydrophilic and hydrophobic.

(i) Lyophilic colloids: The word ‘lyophilic’ means liquid-loving. Colloidal sols directly formed by mixing substances like gum, gelatine, starch, rubber, etc., with a suitable liquid (the dispersion medium) are called lyophilic sols. An important characteristic of these sols is that if the dispersion medium is separated from the dispersed phase (say by evaporation), the sol can be reconstituted by simply remixing with the dispersion medium. That is why these sols are also called reversible sols. Furthermore, these sols are quite stable and cannot be easily coagulated as discussed later.

(ii) Lyophobic colloids: The word ‘lyophobic’ means liquid-hating. Substances like metals, their sulphides, etc., when simply mixed with the dispersion medium do not form the colloidal sol. Their colloidal sols can be prepared only by special methods (as discussed later). Such sols are called lyophobic sols. These sols are readily precipitated (or coagulated) on the addition of small amounts of electrolytes, by heating or by shaking and hence, are not stable. Further, once precipitated, they do not give back the colloidal sol by simple addition of the dispersion medium. Hence, these sols are also called irreversible sols. Lyophobic sols need stabilising agents for their preservation.

5.4.3 Classification Based on Type of Particles of the Dispersed Phase, Multimolecular, Macromolecular and Associated Colloids

Depending upon the type of the particles of the dispersed phase, colloids are classified as: multimolecular, macromolecular and associated colloids.

(i) Multimolecular colloids: On dissolution, a large number of atoms or smaller molecules of a substance aggregate together to form species having size in the colloidal range (diameter<1nm). The species thus formed are called multimolecular colloids. For example, a gold sol may contain particles of various sizes having
many atoms. Sulphur sol consists of particles containing a thousand or more of S8 sulphur molecules.

(ii) Macromolecular colloids: Macromolecules (Unit 15) in suitable solvents form solutions in which the size of the macromolecules may be in the colloidal range. Such systems are called macromolecular colloids. These colloids are quite stable and resemble true solutions in many respects. Examples of naturally occurring macromolecules are starch, cellulose, proteins and enzymes; and those of man-made macromolecules are polythene, nylon, polystyrene, synthetic rubber, etc.

(iii) Associated colloids (Micelles): There are some substances which at low concentrations behave as normal strong electrolytes, but at higher concentrations exhibit colloidal behaviour due to the formation of aggregates. The aggregated particles thus formed are called micelles. These are also known as associated colloids. The formation of micelles takes place only above a particular temperature called Kraft temperature (Tk) and above a particular concentration called critical micelle concentration (CMC). On dilution, these colloids revert back to individual ions. Surface active agents such as soaps and synthetic detergents belong to this class. For soaps, the CMC is 10–4 to 10–3 mol L–1. These colloids have both lyophobic and lyophilic parts. Micelles may contain as many as 100 molecules or more.

Mechanism of micelle formation

Let us take the example of soap solutions. Soap is sodium or potassium salt of a higher fatty acid and may be represented as RCOONa+ (e.g., sodium stearate CH3(CH2)16COONa+, which is a major component of many bar soaps). When dissolved in water, it dissociates into RCOO and Na+ ions. The RCOO ions, however, consist of two parts — a long hydrocarbon chain R (also called non-polar ‘tail’) which is hydrophobic (water repelling), and a polar group COO (also called polar-ionic ‘head’), which is hydrophilic (water loving).


The RCOO ions are, therefore, present on the surface with their COO groups in water and the hydrocarbon chains R staying away from it and remain at the surface. But at critical micelle concentration, the anions are pulled into the bulk of the solution and aggregate to form a spherical shape with their hydrocarbon chains pointing towards the centre of the sphere with COO part remaining outward on the surface of the sphere. An aggregate of water at low concentrations of soap thus formed is known as ‘ionic micelle’. These micelles may contain as many as 100 such ions.

Similarly, in case of detergents, e.g., sodium laurylsulphate, CH3(CH2)11SO4Na+, the polar group is –SO4 along with the long hydrocarbon chain. Hence, the mechanism of micelle formation here also is same as that of soaps.

Cleansing action of soaps

It has been mentioned earlier that a micelle consists of a hydrophobic hydrocarbon – like central core. The cleansing action of soap is due to the fact that soap molecules form micelle around the oil droplet in such a way that hydrophobic part of the stearate ions is in the oil droplet and hydrophilic part projects out of the grease droplet like the bristles (Fig. 5.7). Since the polar groups can interact with water, the oil droplet surrounded by stearate ions is now pulled in water and removed from the dirty surface. Thus soap helps in emulsification and washing away of oils and fats. The negatively charged sheath around the globules prevents them from coming together and forming aggregates.

5.4.4 Preparation of Colloids

A few important methods for the preparation of colloids are as follows:
(a) Chemical methods

Colloidal solutions can be prepared by chemical reactions leading to formation of molecules by double decomposition, oxidation, reduction or hydrolysis. These molecules then aggregate leading to formation of sols.

(b) Electrical disintegration or Bredig’s Arc method

This process involves dispersion as well as condensation. Colloidal sols of metals such as gold, silver, platinum, etc., can be prepared by this method. In this method, electric arc is struck between electrodes of the metal immersed in the dispersion medium (Fig. 5.8). The intense heat produced vapourises the metal, which then condenses to form particles of colloidal size.

(c) Peptization

Peptization may be defined as the process of converting a precipitate into colloidal sol by shaking it with dispersion medium in the presence a small amount of electrolyte. The electrolyte used for this purpose is called peptizing agent. This method is applied, generally, to convert a freshly prepared precipitate into a colloidal sol. During peptization, the precipitate adsorbs one of the ions of the electrolyte on its surface. This causes the development of positive or negative charge on precipitates, which ultimately break up into smaller particles of the size of a colloid.

5.4.5 Purification of Colloidal Solutions
Colloidal solutions when prepared, generally contain excessive amount of electrolytes and some other soluble impurities. While the presence of traces of electrolyte is essential for the stability of the colloidal solution, larger quantities coagulate it. It is, therefore, necessary to reduce the concentration of these soluble impurities to a requisite minimum. The process used for reducing the amount of impurities to a requisite minimum is known as purification of colloidal solution. The purification of colloidal solution is carried out by the following mehods:

(i) Dialysis: It is a process of removing a dissolved substance from a colloidal solution by means of diffusion through a suitable membrane. Since particles (ions or smaller molecules) in a true solution can pass through animal membrane (bladder) or parchment paper or cellophane sheet but not the colloidal particles, the membrane can be used for dialysis. The apparatus used for this purpose is called dialyser. A bag of suitable membrane containing the colloidal solution is suspended in a vessel through which fresh water is continuously flowing (Fig. 5.9). The molecules and ions diffuse through membrane into the outer water and pure colloidal solution is left behind.

(ii) Electro-dialysis: Ordinarily, the process of dialysis is quite slow. It can be made faster by applying an electric field if the dissolved substance in the impure colloidal solution is only an electrolyte. The process is then named electrodialysis. The colloidal solution is placed in a bag of suitable membrane while pure water is taken outside. Electrodes are fitted in the compartment as shown in Fig. 5.10. The ions present in the colloidal solution migrate out to the oppositely charged electrodes.

(iii) Ultrafiltration: Ultrafiltration is the process of separating the colloidal particles from the solvent and soluble solutes present in the colloidal solution by specially prepared filters, which are permeable to all substances except the colloidal particles. Colloidal particles can pass through ordinary filter paper because the pores are too large. However, the pores of filter paper can be reduced in size by impregnating with colloidion solution to stop the flow of colloidal particles. The usual colloidion is a 4% solution of nitro- cellulose in a mixture of alcohol and ether. An ultra-filter paper may be prepared by soaking the filter paper in a colloidion solution, hardening by formaldehyde and then finally drying it. Thus, by using ultra-filter paper, the colloidal particles are separated from rest of the materials. Ultrafiltration is a slow process. To speed up the process, pressure or suction is applied. The colloidal particles left on the ultra-filter paper are then stirred with fresh dispersion medium (solvent) to get a pure colloidal solution.

5.4.6 Properties of Colloidal Solutions

Various properties exhibited by the colloidal solutions are described below:

(i) Colligative properties: Colloidal particles being bigger aggregates, the number of particles in a colloidal solution is comparatively small as compared to a true solution. Hence, the values of colligative properties (osmotic pressure, lowering in vapour pressure, depression in freezing point and elevation in boiling point) are of small order as compared to values shown by true solutions at same concentrations.

(ii) Tyndall effect: If a homogeneous solution placed in dark is observed in the direction of light, it appears clear and, if it is observed from a direction at right angles to the direction of light beam, it appears perfectly dark. Colloidal solutions viewed in the same way may also appear reasonably clear or translucent by the transmitted light but Scattered light they show a mild to strong opalescence, when viewed at right angles to the passage of light, i.e., the path of the beam is illuminated by a bluish light. This effect was first observed by Faraday and later studied in detail by Tyndall and is termed as Tyndall effect. The bright cone of the light is called Tyndall cone (Fig. 5.11). The Tyndall effect is due to the fact that colloidal particles scatter light in all directions in space. This scattering of light illuminates the path of beam in the colloidal dispersion.
Tyndall effect can be observed during the projection of picture in the cinema hall due to scattering of light by dust and smoke particles present there. Tyndall effect is observed only when the following two conditions are satisfied.

(i) The diameter of the dispersed particles is not much smaller than the wavelength of the light used; and
(ii) The refractive indices of the dispersed phase and the dispersion medium differ greatly in magnitude.

Tyndall effect is used to distinguish between a colloidal and true solution. Zsigmondy, in 1903, used Tyndall effect to set up an apparatus known as ultramicroscope. An intense beam of light is focussed on the colloidal solution contained in a glass vessel. The focus of the light is then observed with a microscope at right angles to the beam. Individual colloidal particles appear as bright stars against a dark background. Ultramicroscope does not render the actual colloidal particles visible but only observe the light scattered by them. Thus, ultramicroscope does not provide any information about the size and
shape of colloidal particles.

(iii) Colour: The colour of colloidal solution depends on the wavelength of light scattered by the dispersed particles. The wavelength of light further depends on the size and nature of the particles. The colour of colloidal solution also changes with the manner in which the observer receives the light. For example, a mixture of milk and water appears blue when viewed by the reflected light and red when viewed by the transmitted light. Finest gold sol is red in colour; as the size of particles increases, it appears purple, then blue and finally golden.

(iv) Brownian movement: When colloidal solutions are viewed under a powerful ultramicroscope, the colloidal particles appear to be in a state of continuous zig-zag motion all over the field of view. This motion was first observed by the British botanist, Robert Brown, and is known as Brownian movement (Fig. 5.12). This motion is independent of the nature of the colloid but depends on the size of the particles and viscosity of the solution. Smaller the size and lesser the viscosity, faster is the motion.

The Brownian movement has been explained to be due to the unbalanced bombardment of the particles by the molecules of the dispersion medium. The Brownian movement has a stirring effect which does not permit the particles to settle and thus, is responsible for the stability of sols.

(v) Charge on colloidal particles: Colloidal particles always carry an electric charge. The nature of this charge is the same on all the particles in a given colloidal solution and may be either positive or negative. A list of some common sols with the nature of charge on their particles is given below:

Positively charged sols Negatively charged sols
Hydrated metallic oxides, e.g., Al2O3.xH2O, CrO3.xH2O and Fe2O3.xH2O, etc. Metals, e.g., copper, silver,gold sols.
Basic dye stuffs, e.g., methylene blue sol. Metallic sulphides, e.g., As2S3, Sb2S3, CdS sols.
Haemoglobin (blood) Acid dye stuffs, e.g., eosin, congo red sols.
Oxides, e.g., TiO2 sol. Sols of starch, gum, gelatin, clay, charcoal, etc.

The charge on the sol particles is due to one or more reasons, viz., due to electron capture by sol particles during electrodispersion of metals, due to preferential adsorption of ions from solution and/or due to formulation of electrical double layer.

Preferential adsorption of ions is the most accepted reason. The sol particles acquire positive or negative charge by preferential adsorption of +ve or –ve ions. When two or more ions are present in the dispersion medium, preferential adsorption of the ion common to the colloidal particle usually takes place. This can be explained by taking the following examples:

(a) When silver nitrate solution is added to potassium iodide solution, the precipitated silver iodide adsorbs iodide ions from the dispersion medium and negatively charged colloidal solution results. However, when KI solution is added to AgNO3 solution, positively charged sol results due to adsorption of Ag+ ions from dispersion medium.
     AgI/I                                   AgI/Ag+
Negatively charged           Positively charged

(b) If FeCl3 is added to excess of hot water, a positively charged sol of hydrated ferric oxide is formed due to adsorption of Fe3+ ions. However, when ferric chloride is added to NaOH a negatively charged sol is obtained with adsorption of OH- ions.

Fe2O3.xH2O/Fe3+                  Fe2O3.xH2O/OH
  Positively charged                         Negatively charged
Having acquired a positive or a negative charge by selective adsorption on the surface of a colloidal particle as stated above, this layer attracts counter ions from the medium forming a second layer, as shown below.

AgI/I- K+ AgI/Ag+I-
The combination of the two layers of opposite charges around the colloidal particle is called Helmholtz electrical double layer. According to modern views, the first layer of ions is firmly held and is termed fixed layer while the second layer is mobile which is termed diffused layer. Since separation of charge is a seat of potential, the charges of opposite signs on the fixed and diffused parts of the double layer results in a difference in potential between these layers. This potential difference between the fixed layer and the diffused layer of opposite charges is called the electrokinetic potential or zeta potential. The presence of equal and similar charges on colloidal particles is largely responsible in providing stability to the colloidal solution, because the repulsive forces between charged particles having same charge prevent them from coalescing or aggregating when they come closer to one another.

(vi) Electrophoresis: The existence of charge on colloidal particles is confirmed by electrophoresis experiment. When electric potential is applied across two platinum electrodes dipping in a colloidal solution, the colloidal particles move towards one or the other electrode. The movement of colloidal particles under an applied electric potential is called electrophoresis. Positively charged particles move towards the cathode while negatively charged particles move towards the anode. This can be demonstrated by the following experimental set- up (Fig. 5.13).

When electrophoresis, i.e., movement of particles is prevented by some suitable means, it is observed that the dispersion medium begins to move in an electric field. This phenomenon is termed electroosmosis.

(vii) Coagulation or precipitation: The stability of the lyophobic sols is due to the presence of charge on colloidal particles. If, somehow, the charge is removed, the particles will come nearer to each other to form aggregates (or coagulate) and settle down under the force of gravity.

The process of settling of colloidal particles is called coagulation or precipitation of the sol.
The coagulation of the lyophobic sols can be carried out in the following ways:
(i) By electrophoresis: The colloidal particles move towards oppositely charged electrodes, get discharged and precipitated.
(ii) By mixing two oppositely charged sols: Oppositely charged sols when mixed in almost equal proportions, neutralise their charges and get partially or completely precipitated. Mixing of hydrated ferric oxide (+ve sol) and arsenious sulphide (–ve sol) bring them in the precipitated forms. This type of coagulation is called mutual coagulation.
(iii) By boiling: When a sol is boiled, the adsorbed layer is disturbed due to increased collisions with the molecules of dispersion medium. This reduces the charge on the particles and ultimately lead to settling down in the form of a precipitate.
(iv) By persistent dialysis: On prolonged dialysis, traces of the electrolyte present in the sol are removed almost completely and the colloids become unstable and ultimately coagulate.
(v) By addition of electrolytes: When excess of an electrolyte is added, the colloidal particles are precipitated. The reason is that colloids interact with ions carrying charge opposite to that present on themselves. This causes neutralisation leading to their coagulation. The ion responsible for neutralisation of charge on the particles is called the coagulating ion. A negative ion causes the precipitation of positively charged sol and vice versa.
It has been observed that, generally, the greater the valence of the flocculating ion added, the greater is its power to cause precipitation. This is known as Hardy-Schulze rule. In the coagulation of a negative sol, the flocculating power is in the order: Al3+Ba2+>Na+
Similarly, in the coagulation of a positive sol, the flocculating power is in the order: [Fe(CN)6]4– > PO43– > SO42– > Cl
The minimum concentration of an electrolyte in millimoles per litre required to cause precipitation of a sol in two hours is called coagulating value. The smaller the quantity needed, the higher will be the coagulating power of an ion.

Coagulation of lyophilic sols

There are two factors which are responsible for the stability of lyophilic sols. These factors are the charge and solvation of the colloidal particles. When these two factors are removed, a lyophilic sol can be coagulated. This is done (i) by adding an electrolyte and (ii) by adding a suitable solvent. When solvents such as alcohol and acetone are added to hydrophilic sols, the dehydration of dispersed phase occurs. Under this condition, a small quantity of electrolyte can bring about coagulation.

Protection of colloids

Lyophilic sols are more stable than lyophobic sols. This is due to the fact that lyophilic colloids are extensively solvated, i.e., colloidal particles are covered by a sheath of the liquid in which they are dispersed.

Lyophilic colloids have a unique property of protecting lyophobic colloids. When a lyophilic sol is added to the lyophobic sol, the lyophilic particles form a layer around lyophobic particles and thus protect the latter from electrolytes. Lyophilic colloids used for this purpose are called protective colloids.

5.5 Emulsions

These are liquid-liquid colloidal systems, i.e., the dispersion of finely divided droplets in another liquid. If a mixture of two immiscible or partially miscible liquids is shaken, a coarse dispersion of one liquid in the other is obtained which is called emulsion. Generally, one of the two liquids is water. There are two types of emulsions.
(i) Oil dispersed in water (O/W type) and
(ii) Water dispersed in oil (W/O type).
In the first system, water acts as dispersion medium. Examples of this type of Oil in water Water in oil emulsion are milk and vanishing cream. Milk, liquid fat is dispersed in water. In the second system, oil acts as dispersion medium. Common examples of this type are butter and cream.

Emulsions of oil in water are unstable and sometimes they separate into two layers on standing. For stabilisation of an emulsion, a third component called emulsifying agent is usually added. The emulsifying agent forms an interfacial film between suspended particles and the medium. The principal emulsifying agents for O/W emulsions are proteins, gums, natural and synthetic soaps, etc., and for W/O, heavy metal salts of fatty acids, long chain alcohols, lampblack, etc.

Emulsions can be diluted with any amount of the dispersion medium. On the other hand, the dispersed liquid when mixed, forms a separate layer. The droplets in emulsions are often negatively charged and can be precipitated by electrolytes. They also show Brownian movement and Tyndall effect. Emulsions can be broken into constituent liquids by heating, freezing, centrifuging, etc.

5.6 Colliods Around Us

Most of the substances, we come across in our daily life, are colloids. The meals we eat, the clothes we wear, the wooden furniture we use, the houses we live in, the newspapers we read, are largely composed of colloids.
Following are the interesting and noteworthy examples of colloids:

(i) Blue colour of the sky: Dust particles along with water suspended in air scatter blue light which reaches our eyes and the sky looks blue to us.

(ii) Fog, mist and rain: When a large mass of air containing dust particles, is cooled below its dewpoint, the moisture from the air condenses on the surfaces of these particles forming fine droplets. These droplets being colloidal in nature continue to float in air in the form of mist or fog. Clouds are aerosols having small droplets of water suspended in air. On account of condensation in the upper atmosphere, the colloidal droplets of water grow bigger and bigger in size, till they come down in the form of rain. Sometimes, the rainfall occurs when two oppositely charged clouds meet.

It is possible to cause artificial rain by throwing electrified sand or spraying a sol carrying charge opposite to the one on clouds from an aeroplane.

(iii) Food articles: Milk, butter, halwa, ice creams, fruit juices, etc., are all colloids in one form or the other.

(iv) Blood: It is a colloidal solution of an albuminoid substance. The styptic action of alum and ferric chloride solution is due to coagulation of blood forming a clot which stops further bleeding.

(v) Soils: Fertile soils are colloidal in nature in which humus acts as a protective colloid. On account of colloidal nature, soils adsorb moisture and nourishing materials.

(vi) Formation of delta: River water is a colloidal solution of clay. Sea water contains a number of electrolytes. When river water meets the sea water, the electrolytes present in sea water coagulate the colloidal solution of clay resulting in its deposition with the formation of delta.

Applications of colloids

Colloids are widely used in the industry. Following are some examples:
(i) Electrical precipitation of smoke: Smoke is a colloidal solution of solid particles such as carbon, arsenic compounds, dust, etc., in air. The smoke, before it comes out from the chimney, is led through a chamber containing plates having a charge opposite to that carried by smoke particles. The particles on coming in contact with these plates lose their charge and get precipitated. The particles thus settle down on the floor of the chamber. The precipitator is called Cottrell precipitator (Fig.5.15).

(ii) Purification of drinking water: The water obtained from natual sources often contains suspended impurities. Alum is added to such water to coagulate the suspended impurities and make water fit for drinking purposes.

(iii) Medicines: Most of the medicines are colloidal in nature. For example, argyrol is a silver sol used as an eye lotion. Colloidal antimony is used in curing kalaazar. Colloidal gold is used for intramuscular injection. Milk of magnesia, an emulsion, is used for stomach disorders. Colloidal medicines are more effective because they have large surface area and are therefore easily assimilated.

(iv) Tanning: Animal hides are colloidal in nature. When a hide, which has positively charged particles, is soaked in tannin, which contains negatively charged colloidal particles, mutual coagulation takes place. This results in the hardening of leather. This process is termed as tanning. Chromium salts are also used in place of tannin.

(v) Cleansing action of soaps and detergents: This has already been described in Section 5.4.3.

(vi) Photographic plates and films: Photographic plates or films are prepared by coating an emulsion of the light sensitive silver bromide in gelatin over glass plates or celluloid films.

(vii) Rubber industry: Latex is a colloidal solution of rubber particles which are negatively charged. Rubber is obtained by coagulation of latex.

(viii) Industrial products: Paints, inks, synthetic plastics, rubber, graphite lubricants, cement, etc., are all colloidal solutions.

Intext Questions
5.7 What modification can you suggest in the Hardy Schulze law?
5.8 Why is it essential to wash the precipitate with water before estimating it quantitatively?

Summary

Adsorption is the phenomenon of attracting and retaining the molecules of a substance on the surface of a solid resulting into a higher concentration on the surface than in the bulk. The substance adsorbed is known as adsorbate and the substance on which adsorption takes place is called adsorbent. In physisorption, adsorbate is held to the adsorbent by weak van der Waals forces, and in chemisorption, adsorbate is held to the adsorbent by strong chemical bond. Almost all solids adsorb gases. The extent of adsorption of a gas on a solid depends upon nature of gas, nature of solid, surface area of the solid, pressure of gas and temperature of gas. The relationship between the extent of adsorption (x/m) and pressure of the gas at constant temperature is known as adsorption isotherm.

A catalyst is a substance which enhances the rate of a chemical reaction without itself getting used up in the reaction. The phenomenon using catalyst is known as catalysis. In homogeneous catalysis, the catalyst is in the same phase as are the reactants, and in heterogeneous catalysis the catalyst is in a different phase from that of the reactants.

Colloidal solutions are intermediate between true solutions and suspensions. The size of the colloidal particles range from 1 to 1000 nm. A colloidal system consists of two phases – the dispersed phase and the dispersion medium. Colloidal systems are classified in three ways depending upon (i) physical states of the dispersed phase and dispersion medium (ii) nature of interaction between the dispersed phase and dispersion medium and (iii) nature of particles of dispersed phase. The colloidal systems show interesting optical, mechanical and electrical properties. The process of changing the colloidal particles in a sol into the insoluble precipitate by addition of some suitable electrolytes is known as coagulation. Emulsions are colloidal systems in which both dispersed phase and dispersion medium are liquids. These can be of: (i) oil in water type and (ii) water in oil type. The process of making emulsion is known as emulsification. To stabilise an emulsion, an emulsifying agent or emulsifier is added. Soaps and detergents are most frequently used as emulsifiers. Colloids find several applications in industry as well as in daily life.

Exercise
5.1 Distinguish between the meaning of the terms adsorption and absorption. Give one example of each.
5.2 What is the difference between physisorption and chemisorption?
5.3 Give reason why a finely divided substance is more effective as an adsorbent.
5.4 What are the factors which influence the adsorption of a gas on a solid?
5.5 What is an adsorption isotherm? Describe Freundlich adsorption isotherm.
5.6 What do you understand by activation of adsorbent? How is it achieved?
5.7 What role does adsorption play in heterogeneous catalysis?
5.8 Why is adsorption always exothermic ?
5.9 How are the colloidal solutions classified on the basis of physical states of the dispersed phase and dispersion medium?
5.10 Discuss the effect of pressure and temperature on the adsorption of gases on solids.
5.11 What are lyophilic and lyophobic sols? Give one example of each type. Why are hydrophobic sols easily coagulated ?
5.12 What is the difference between multimolecular and macromolecular colloids? Give one example of each. How are associated colloids different from these two types of colloids?
5.13 What are enzymes ? Write in brief the mechanism of enzyme catalysis.
5.14 How are colloids classified on the basis of
(i) physical states of components
(ii) nature of dispersion medium and
(iii) interaction between dispersed phase and dispersion medium?
5.15 Explain what is observed
(i) when a beam of light is passed through a colloidal sol.
(ii) an electrolyte, NaCl is added to hydrated ferric oxide sol.
(iii) electric current is passed through a colloidal sol?
5.16 What are emulsions? What are their different types? Give example of each type.
5.17 What is demulsification? Name two demulsifiers.
5.18 Action of soap is due to emulsification and micelle formation. Comment.
5.19 Give four examples of heterogeneous catalysis.
5.20 What do you mean by activity and selectivity of catalysts?
5.21 Describe some features of catalysis by zeolites.
5.22 What is shape selective catalysis?
5.23 Explain the following terms:
(i) Electrophoresis (ii) Coagulation (iii) Dialysis (iv) Tyndall effect.
5.24 Give four uses of emulsions.
5.25 What are micelles? Give an example of a micellers system.
5.26 Explain the terms with suitable examples:
(i) Alcosol (ii) Aerosol (iii) Hydrosol.
5.27 Comment on the statement that “colloid is not a substance but a state of substance”.

I. Multiple Choice Questions (Type-I)

1. Which of the following process does not occur at the interface of phases?

(i) crystallisation
(ii) heterogenous catalysis
(iii) homogeneous catalysis
(iv) corrosion

2. At the equilibrium position in the process of adsorption ___________.

(i) ΔH > 0
(ii) ΔH = TΔS
(iii) ΔH > TΔS
(iv) ΔH < TΔS

3. Which of the following interface cannot be obtained?

(i) liquid-liquid
(ii) solid-liquid
(iii) liquid-gas
(iv) gas-gas

4. The term ‘sorption’ stands for ____________.

(i) absorption
(ii) adsorption
(iii) both absorption and adsorption
(iv) desorption

5. Extent of physisorption of a gas increases with ___________.

(i) increase in temperature.
(ii) decrease in temperature.
(iii) decrease in surface area of adsorbent.
(iv) decrease in strength of van der Waals forces.

6. Extent of adsorption of adsorbate from solution phase increases with ________.
(i) increase in amount of adsorbate in solution.
(ii) decrease in surface area of adsorbent.
(iii) increase in temperature of solution.
(iv) decrease in amount of adsorbate in solution.

7. Which one of the following is not applicable to the phenomenon of adsorption?

(i) ΔH > 0
(ii) ΔG < 0
(iii) ΔS < 0
(iv) ΔH < 0

8. Which of the following is not a favourable condition for physical adsorption?

(i) high pressure
(ii) negative ΔH
(iii) higher critical temperature of adsorbate
(iv) high temperature

9. Physical adsorption of a gaseous species may change to chemical adsorption with ______________.

(i) decrease in temperature
(ii) increase in temperature
(iii) increase in surface area of adsorbent
(iv) decrease in surface area of adsorbent

10. In physisorption adsorbent does not show specificity for any particular gas because ______________.

(i) involved van der Waals forces are universal.
(ii) gases involved behave like ideal gases.
(iii) enthalpy of adsorption is low.
(iv) it is a reversible process.

11. Which of the following is an example of absorption?

(i) Water on silica gel
(ii) Water on calcium chloride
(iii) Hydrogen on finely divided nickel
(iv) Oxygen on metal surface

12. On the basis of data given below predict which of the following gases shows least adsorption on a definite amount of charcoal?

Gas CO2 SO2 CH4 H2
Critical temp./K 304 630 190 33

(i) CO2
(ii) SO2
(iii) CH4
(iv) H2

13. In which of the following reactions heterogenous catalysis is involved?

(i) (b), (c)
(ii) (b), (c), (d)
(iii) (a), (b), (c)
(iv) (d)

14. At high concentration of soap in water, soap behaves as ____________.

(i) molecular colloid
(ii) associated colloid
(iii) macromolecular colloid
(iv) lyophilic colloid

15. Which of the following will show Tyndall effect?

(i) Aqueous solution of soap below critical micelle concentration.
(ii) Aqueous solution of soap above critical micelle concentration.
(iii) Aqueous solution of sodium chloride.
(iv) Aqueous solution of sugar.

16. Method by which lyophobic sol can be protected.

(i) By addition of oppositely charged sol.
(ii) By addition of an electrolyte.
(iii) By addition of lyophilic sol.
(iv) By boiling.

17. Freshly prepared precipitate sometimes gets converted to colloidal solution by ___________.

(i) coagulation
(ii) electrolysis
(iii) diffusion
(iv) peptisation

18. Which of the following electrolytes will have maximum coagulating value for AgI/Ag+ sol?

(i) Na2S
(ii) Na3PO4
(iii) Na2SO4
(iv) NaCl

19. A colloidal system having a solid substance as a dispersed phase and a liquid as a dispersion medium is classified as ____________.

(i) solid sol
(ii) gel
(iii) emulsion
(iv) sol

20. The values of colligative properties of colloidal solution are of small order in comparison to those shown by true solutions of same concentration because
of colloidal particles __________________.

(i) exhibit enormous surface area.
(ii) remain suspended in the dispersion medium.
(iii) form lyophilic colloids.
(iv) are comparatively less in number.

21. Arrange the following diagrams in correct sequence of steps involved in the mechanism of catalysis, in accordance with modern adsorption theory.

(i) a → b → c → d → e
(ii) a → c → b → d → e
(iii) a → c → b → e → d
(iv) a → b → c → e → d

22. Which of the following process is responsible for the formation of delta at a place where rivers meet the sea?

(i) Emulsification
(ii) Colloid formation
(iii) Coagulation
(iv) Peptisation

23. Which of the following curves is in accordance with Freundlich adsorption isotherm?

24. Which of the following process is not responsible for the presence of electric charge on the sol particles?

(i) Electron capture by sol particles.
(ii) Adsorption of ionic species from solution.
(iii) Formation of Helmholtz electrical double layer.
(iv) Absorption of ionic species from solution.

25. Which of the following phenomenon is applicable to the process shown in the Fig. 5.1?

(i) Absorption
(ii) Adsorption
(iii) Coagulation
(iv) Emulsification

II. Multiple Choice Questions (Type-II)

Note : In the following questions two or more options may be correct.

26. Which of the following options are correct?

(i) Micelle formation by soap in aqueous solution is possible at all temperatures.
(ii) Micelle formation by soap in aqueous solution occurs above a particular concentration.
(iii) On dilution of soap solution micelles may revert to individual ions.
(iv) Soap solution behaves as a normal strong electrolyte at all concentrations.

27. Which of the following statements are correct about solid catalyst?

(i) Same reactants may give different product by using different catalysts.
(ii) Catalyst does not change ΔH of reaction.
(iii) Catalyst is required in large quantities to catalyse reactions.
(iv) Catalytic activity of a solid catalyst does not depend upon the strength of chemisorption.

28. Freundlich adsorption isotherm is given by the expression x/m = k p1/n which of the following conclusions can be drawn from this expression.

(i) When 1/n = 0, the adsorption is independent of pressure.
(ii) When 1/n = 0, the adsorption is directly proportional to pressure.
(iii) When n = 0, x/m vs p graph is a line parallel to x-axis.
(iv) When n = 0, plot of x/m vs p is a curve.

29. H2 gas is adsorbed on activated charcoal to a very little extent in comparison to easily liquefiable gases due to ____________.

(i) very strong van der Waal’s interaction.
(ii) very weak van der Waals forces.
(iii) very low critical temperature.
(iv) very high critical temperature.

30. Which of the following statements are correct?

(i) Mixing two oppositely charged sols neutralises their charges and stabilises the colloid.
(ii) Presence of equal and similar charges on colloidal particles provides stability to the colloids.
(iii) Any amount of dispersed liquid can be added to emulsion without destabilising it.
(iv) Brownian movement stabilises sols.

31. An emulsion cannot be broken by __________ and ___________.

(i) heating
(ii) adding more amount of dispersion medium
(iii) freezing
(iv) adding emulsifying agent

32. Which of the following substances will precipitate the negatively charged emulsions?

(i) KCl
(ii) glucose
(iii) urea
(iv) NaCl

33. Which of the following colloids cannot be coagulated easily?

(i) Lyophobic colloids.
(ii) Irreversible colloids.
(iii) Reversible colloids.
(iv) Lyophilic colloids.

34. What happens when a lyophilic sol is added to a lyophobic sol?

(i) Lyophobic sol is protected.
(ii) Lyophilic sol is protected.
(iii) Film of lyophilic sol is formed over lyophobic sol.
(iv) Film of lyophobic sol is formed over lyophilic sol.

35. Which phenomenon occurs when an electric field is applied to a colloidal solution and electrophoresis is prevented?

(i) Reverse osmosis takes place.
(ii) Electroosmosis takes place.
(iii) Dispersion medium begins to move.
(iv) Dispersion medium becomes stationary.

36. In a reaction, catalyst changes ____________.

(i) physically
(ii) qualitatively
(iii) chemically
(iv) quantitatively

37. Which of the following phenomenon occurs when a chalk stick is dipped in ink?

(i) adsorption of coloured substance
(ii) adsorption of solvent
(iii) absorption and adsorption both of solvent
(iv) absoprtion of solvent

III. Short Answer Type

38. Why is it important to have clean surface in surface studies?
39. Why is chemisorption referred to as activated adsorption?
40. What type of solutions are formed on dissolving different concentrations of soap in water?
41. What happens when gelatin is mixed with gold sol?
42. How does it become possible to cause artificial rain by spraying silver iodide on the clouds?
43. Gelatin which is a peptide is added in icecreams. What can be its role?
44. What is collodion?
45. Why do we add alum to purify water?
46. What happens when electric field is applied to colloidal solution?
47. What causes brownian motion in colloidal dispersion?
48. A colloid is formed by adding FeCl3 in excess of hot water. What will happen if excess sodium chloride is added to this colloid?
49. How do emulsifying agents stabilise the emulsion?
50. Why are some medicines more effective in the colloidal form?
51. Why does leather get hardened after tanning?
52. How does the precipitation of colloidal smoke take place in Cottrell precipitator?
53. How will you distinguish between dispersed phase and dispersion medium in an emulsion?
54. On the basis of Hardy-Schulze rule explain why the coagulating power of phosphate is higher than chloride.
55. Why does bleeding stop by rubbing moist alum?
56. Why is Fe(OH)3 colloid positively charged, when prepared by adding FeCl3 to hot water?
57. Why do physisorption and chemisorption behave differently with rise in temperature?
58. What happens when dialysis is prolonged?
59. Why does the white precipitate of silver halide become coloured in the presence of dye eosin.
60. What is the role of activated charcoal in gas mask used in coal mines?
61. How does a delta form at the meeting place of sea and river water?
62. Give an example where physisorption changes to chemisorption with rise in temperature. Explain the reason for change.
63. Why is desorption important for a substance to act as good catalyst?
64. What is the role of diffusion in heterogenous catalysis?
65. How does a solid catalyst enhance the rate of combination of gaseous molecules?
66. Do the vital functions of the body such as digestion get affected during fever? Explain your answer.

IV. Matching Type

Note : Match the items of Column I and Column II in the following questions.

67. Method of formation of solution is given in Column I. Match it with the type of solution given in Column II.

Column I Column II
(i) Sulphur vapours passed through cold water (a) Normal electrolyte solution
(ii) Soap mixed with water above critical micelle concentration (b) Molecular colloids
(iii) White of egg whipped with water (c) Associated colloid
(iv) Soap mixed with water below critical micelle concentration (d) Macro molecular colloids

68. Match the statement given in Column I with the phenomenon given in Column II.

Column I Column II
(i) Dispersion medium moves in an electric field (a) Osmosis
(ii) Solvent molecules pass through semi permeable membrane towards solvent side (b) Electrophoresis
(iii) Movement of charged colloidal particles under the influence of applied electric potential towards oppositely charged electrodes (c) Electroosmosis
(iv) Solvent molecules pass through semi permeable membranes towards solution side (d) Reverse osmosis

69. Match the items given in Column I and Column II.

Column I Column II
(i) Protective colloid (a) FeCl3 + NaOH
(ii) Liquid – liquid colloid (b) Lyophilic colloids
(iii) Positively charged colloid (c) Emulsion
(iv) Negatively charged colloid (d) FeCl3 + hot water

70. Match the types of colloidal systems given in Column I with the name given in Column II.

Column I Column II
(i) Solid in liquid (a) Foam
(ii) Liquid in solid (b) Sol
(iii) Liquid in liquid (c) Gel
(iv) Gas in liquid (d) Emulsion

71. Match the items of Column I and Column II.

Column I Column II
(i) Dialysis (a) Cleansing action of soap
(ii) Peptisation (b) Coagulation
(iii) Emulsification (c) Colloidal sol formation
(iv) Electrophoresis (d) Purification

72. Match the items of Column I and Column II.

Column I Column II
(i) Butter (a) dispersion of liquid in liquid
(ii) Pumice stone (b) dispersion of solid in liquid
(iii) Milk (c) dispersion of gas in solid
(iv) Paints (d) dispersion of liquid in solid

V. Assertion and Reason Type

Note : In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following
choices.

(i) Assertion and reason both are correct and the reason is correct explanation of assertion.
(ii) Assertion and reason both are correct but reason does not explain assertion.
(iii) Assertion is correct but reason is incorrect.
(iv) Both assertion and reason are incorrect.
(v) Assertion is incorrect but reason is correct.

73. Assertion : An ordinary filter paper impregnated with collodion solution stops the flow of colloidal particles.
Reason : Pore size of the filter paper becomes more than the size of colloidal particle.

74. Assertion : Colloidal solutions show colligative properties.
Reason : Colloidal particles are large in size.

75. Assertion : Colloidal solutions do not show brownian motion.
Reason : Brownian motion is responsible for stability of sols.

76. Assertion : Coagulation power of Al3+ is more than Na+.
Reason : Greater the valency of the flocculating ion added, greater is its power to cause precipitation (Hardy Schulze rule).

77. Assertion : Detergents with low CMC are more economical to use.
Reason : Cleansing action of detergents involves the formation of micelles. These are formed when the concentration of detergents becomes equal to CMC.

VI. Long Answer Type

78. What is the role of adsorption in heterogenous catalysis?
79. What are the applications of adsorption in chemical analysis?
80. What is the role of adsorption in froth floatation process used especially for concentration of sulphide ores?
81. What do you understand by shape selective catalysis? Why are zeolites good shape selective catalysts?

ANSWERS

I. Multiple Choice Questions (Type-I)

1. (iii)      2. (ii)      3. (iv)      4. (iii)      5. (ii)      6. (i)      7. (i)      8. (iv)      9. (ii)      10. (i)      11. (ii)      12. (iv)      13. (i)      14. (ii)      15. (ii)      16. (iii)      17. (iv)      18. (ii)      19. (iv)      20. (iv)      21. (ii)      22. (iii)      23. (iii)      24. (iv)      25. (ii)

II. Multiple Choice Questions (Type-II)

26. (ii), (iii)      27. (i), (ii)      28. (i), (iii)      29. (ii), (iii)      30. (ii), (iv)      31. (ii), (iv)      32. (i), (iv)      33. (iii), (iv)      34. (i), (iii)      35. (ii), (iii)      36. (i), (ii)      37. (i), (iv)

III. Short Answer Type

38. It is important to have clean surface as it facilitates the adsorption of desired species.
39. Chemisorption involves formation of bond between gaseous molecules/ atoms and the solid surface for which high activation energy is required. Thus it is referred to as activated adsorption.
40. At lower concentration soap forms a normal electrolytic solution with water. After a certain concentration called critical micelle concentration, colloidal solution is formed.
41. Gold sol is a lyophobic sol. Addition of gelatin stabilises the sol.
42. Clouds are colloidal in nature and carry charge. Spray of silver iodide, an electrolyte, results in coagulation leading to rain.
43. Icecreams are emulsions which get stabilised by emulsifying agents like gelatin.
44. It is a 4% solution of nitrocellulose in a mixture of alcohol and ether.
45. The colloidal impurities present in water get coagulated by added alum, thus making water potable.
46. The charged colloidal particles start moving towards oppositely charged electrodes.
47. Unbalanced bombardment of the particles of dispersed phase by molecules of dispersion medium causes brownian motion. This stabilises the sol.
48. Positively charged sol of hydrated ferric oxide is formed and on adding excess of NaCl, negatively charged chloride ions coagulate the positively charged sol of hydrated ferric oxide.
49. The emulsifying agent forms an interfacial layer between suspended particles and the dispersion medium thereby stabilising the emulsion.
50. Medicines are more effective in the colloidal form because of large surface area and are easily assimilated in this form.
51. Animal hide is colloidal in nature and has positively charged particles. When it is soaked in tanin which has negatively charged colloidal particles,
it results in mutual coagulation taking place.
52. In Cottrell precipitator, charged smoke particles are passed through a chamber containing plates with charge opposite to the smoke particles. Smoke particles lose their charge on the plates and get precipitated.
53. On adding dispersion medium, emulsions can be diluted to any extent. The dispersed phase forms a separate layer if added in excess.
54. Minimum quantity of an electrolyte required to cause precipitation of a sol is called its coagulating value. Greater the charge on flocculating ion and smaller is the amount of electrolyte required for precipitation, higher is the coagulating power of coagulating ion (Hardy-Schulze rule).
55. Moist alum coagulates the blood and so formed blood clot stops bleeding.
56. The adsorption of positively charged Fe3+ ions by the sol of hydrated ferric oxide results in positively charged colloid.
57. Physisorption involves weak van der Waals forces which weaken with rise in temperature. The chemisorption involves formation of chemical bond
involving activation energy and like any other chemical reaction is favoured by rise in temperature.
58. Due to excessive dialysis, traces of electrolyte which stabilises the colloids is removed completely, making the colloid unstable. As a result coagulation takes place.
59. Eosin is adsorbed on the surface of silver halide precipitate making it coloured.
60. Activated charcoal acts as an adsorbent for various poisonous gases present in the coal mines.
61. River water is a colloidal solution of clay and sea water contains lot of electrolytes. The point at which river and sea meet is the site for coagulation.
Deposition of coagulated clay results in delta formation.
62. The process of physisorption for example that of H2 on finely divided nickel, involves weak van der Waals’ forces. With increase in temperature, hydrogen molecules dissociate into hydrogen atoms which are held on the surface by chemisorption.
63. After the reaction is over between adsorbed reactants, the process of desorption is important to remove products and further create space for the other reactant molecules to approach the surface and react.
64. The gaseous molecules diffuse on to the surface of the solid catalyst and get adsorbed. After the required chemical changes the products diffuse away from the surface of the catalyst leaving the surface free for more reactant molecules to get adsorbed and undergo reaction.
65. When gaseous molecules come in contact with the surface of a solid catalyst, a weak chemical combination takes place between the surface of the catalyst and the gaseous molecules, which increases the concentration of reactants on the surface. Different moelcules adsorbed side by side have better chance to react and form new molecules. This enhances the rate of reaction. Also, adsorption is an exothermic process. The heat released in the process of adsorption is utilised in enhancing the reaction rate.
66. Hint : The optimum temperature range for enzymatic activity is 298- 310 K. On either side of this temperature range, enzymatic activity gets affected. Thus, during fever, when temperature rises above 310 K, the activity of enzymes may be affected.

IV. Matching Type

67. (i) → (b) (ii) → (c) (iii) → (d) (iv) → (a)
68. (i) → (c) (ii) → (d) (iii) → (b) (iv) → (a)
69. (i) → (b) (ii) → (c) (iii) → (d) (iv) → (a)
70. (i) → (b) (ii) → (c) (iii) → (d) (iv) → (a)
71. (i) → (d) (ii) → (c) (iii) → (a) (iv) → (b)
72. (i) → (d) (ii) → (c) (iii) → (a) (iv) → (b)

V. Assertion and Reason Type

73. (iii) 74. (ii) 75. (v) 76. (i) 77. (i)

VI. Long Answer Type

78. Hint
• reactants are adsorbed on the surface of the catalyst
• occurrence of chemical reaction on the surface of catalyst
• desorption.

79. Hint:
• In TLC
• Adsorption indicators.
• In qualitative analysis.

80. Hint:
• Adsorption of pine oil on sulphide ore particles.
• Formation of emulsion.
• Hence ore comes out with froth.
• Explanation for shape selective catalysis.

81. Hint:
• Honey comb like structure of zeolites.
• Pores provide sites for reactants to react.

LAB MANUAL

COLLOIDS

IN a true solution, solute particles mix homogeneously with the molecules of the solvent and thus form a single phase. However, a colloidal solution is a heterogeneous system in which very fine particles of one substance disperse (dispersed phase) in another substance called dispersion medium. Particles of the dispersed phase do not form a single phase with the particles of the dispersion medium because of the fact that they are either very large molecules or essentially aggregates of small molecules. Colloidal particles are larger in size than simple molecules but small enough to remain suspended in the dispersion medium (10–9 –10–6 m). Some examples of very large molecules which form collidal dispersion are starch, gum and proteins, whereas colloidal sulphur is an examplen of aggregates of small molecules. Further, a heterogeneous system of a solid as dispersed phase and a liquid as dispersion medium is called a sol. Depending upon the nature of interaction between the dispersed phase and the dispersion medium, colloidal sols are divided into two categories, namely, lyophilic (solvent attracting) and lyophobic (solvent repelling). If water is the dispersion medium, the terms used are hydrophilic and hydrophobic. Egg albumin, starch and gum are lyophilic sols. Freshly prepared ferric hydroxide, aluminium hydroxide and arsenic sulphide sols are examples of lyophobic sols. A few methods of preparation of colloids are – chemical methods, electrical disintegration and peptization. In this unit you will learn to prepare both the types of sols. Also, you will learn a method of purification of sols.

EXPERIMENT 1.1

Aim

To prepare (a) lyophilic sol; and (b) lyophobic sol.

Theory

Since particles of dispersed phase in lyophilic sols have an affinity for the particles of dispersion medium, these sols are more stable as compared to lyophobic sols. Two factors responsible for the stability of sols are – charge and the solvation of the colloidal particles by the solvent. Stability of lyophilic sols is primarily due to the solvation of colloidal particles by the solvent whereas lyophobic sols are stabilised by the charge on the colloidal particles. Due to their charges, colloidal particles remain suspended in solution and coagulation does not take place. These charges may be positive or negative. Some examples of negatively charged sols are starch and arsenious sulphide. Positively charged sol of hydrated ferric oxide is formed when FeCl3 is added to excess of hot water and a negatively charged sol of hydrated ferric oxide is formed when ferric chloride is added to NaOH solution. The lyophilic sols are directly formed by mixing and shaking the substance with a suitable liquid. Lyophobic sols cannot be prepared by direct mixing and shaking. Special methods are employed to prepare these.

Material Required

Procedure

Hazard Warning : • While doing experiment do not eat, drink or smoke.

A. Preparation of Lyophilic Sol

I. Egg Albumin Sol
(i) Prepare 100 mL of 5% (w/v) solution of NaCl in water in a 250 mL beaker.
(ii) Break one egg in a porcelain dish and pipette out the albumin and pour it in sodium chloride solution. Stir well to ensure that the sol is well prepared.

II. Starch/gum Sol
(i) Measure 100 mL of distilled water with the help of a measuring cylinder and transfer it to a 250 mL beaker and boil it.
(ii) Make a paste of 500 mg starch or gum in hot water and transfer this paste to 100 mL of boiling water with constant stirring. Keep water boiling and stirring for
10 minutes after addition of paste. To judge the efficacy of the prepared sol, you may compare it with the original paste prepared.

B. Preparation of Lyophobic Sol

I. Ferric hydroxide/Aluminium hydroxide
(i) Take 100 mL of distilled water in a 250 mL beaker and boil it.
(ii) Add 2g of ferric chloride/aluminium chloride powder to boiling water and stir it well.
(iii) Take 100 mL of distilled water in another 250 mL beaker and boil it.
(iv) Pour 10 mL of ferric chloride/aluminium chloride solution prepared in step (ii) drop by drop into the boiling water with constant stirring. Keep the water boiling till brown/white sol is obtained.

II. Arsenious Sulphide Sol

(i) Transfer 100 mL of distilled water to a beaker of 250 mL capacity.
(ii) Add 0.2 g of arsenious oxide to it and boil the content of the beaker.
(iii) Cool and filter the solution.
(iv) Pass hydrogen sulphide (H2S) gas through the filtered solution till it smells of H2S. (Use Kipp’s apparatus to pass hydrogen sulphide gas).
(v) Expel H2S gas from the sol by slow heating and filter it.
(vi) Label the filtrate as arsenious sulphide sol.

Precautions

(a) While preparing colloidal solutions of starch, gum, ferric chloride, aluminium chloride etc., pour the paste or solution gradually into the boiling water with constant stirring. Addition of these substances in excess may cause precipitation.
(b) Arsenious oxide is poisonous in nature; so wash your hands immediately every time after handling this chemical.

Discussion Questions

(i) How will you differentiate between a true solution and a colloidal dispersion?
(ii) Identify some sols (colloids) that you use in your daily life and mention their importance.
(iii) How do colloids acquire a charge? Why is ferric hydroxide/aluminium hydroxide sol prepared in the experiment, positively charged while arsenious sulphide sol is negatively charged?
(iv) What is coagulation? How is coagulation different from peptization?
(v) How can you convert a colloidal dispersion of sulphur into a true solution?
(vi) Out of lyophilic and lyophobic sols, which one can be easily converted into a gel and why?
(vii) Differentiate between a gel and a sol.
(viii) What are the applications of colloids in the field of Medicine, Defense and in Rocket Technology?

EXPERIMENT 1.2

Aim
To purify prepared sol by dialysis.

Material Required

Procedure
(i) Take a square sheet (30 cm 30 cm) of parchment/cellophane paper.
(ii) Soak the sheet in water and give it a conical shape.
(iii) Pour the colloidal dispersion of egg albumin in the cone of parchment/cellophane paper.
(iv) Tie the cone with a thread and suspend it in a trough containing distilled water as shown in Fig. 1.1.

(v) After about half an hour, test for the presence of ions in the trough water.

(vi) Change the water present in the trough after every half an hour till it is free of the impurities of Na+ and Cl ions. To check the presence of Na+ and Cl ions take water from the trough in two test tubes. To one test tube add uranyl zinc acetate and to the other add silver nitrate solution. A yellow precipitate with uranyl zinc acetate indicates the presence of Na+ ions, while a white precipitate of silver nitrate
indicates the presence of chloride ions.
(vii) Note the time required for the purification of colloidal dispersion.

Note : In some cases, dialysis may be a very slow process. Therefore, in such cases, it is advisable to change the water of the trough twice or thrice till the colloidal dispersion is free of ions.

Precautions

(a) For dialysis make the parchment bag air tight to prevent the entry of water into the bag. Keep the neck of the parchment bag above the surface of water.
(b) Change the water in the trough from time to time during dialysis.

Discussion Question
(i) How can you make the process of dialysis quick? What are the limitations of this technique?

EXPERIMENT 1.3

Aim

To study the role of emulsifying agents in stabilising the emulsions of different oils.

Theory

Emulsion is a type of colloid in which, both the dispersed phase and the dispersion medium are liquids. Here the dispersed phase and the dispersion medium are distinguished by their relative amounts. The one, which is present in smaller proportion, is called dispersed phase, while the other, which is present in relatively large quantity, is known as the dispersion medium.

When oil is shaken with water, a faint milky solution is often observed, which is unstable and is called an emulsion of oil in water. On standing, it gets separated into two layers, i.e. oil and water. The mixing capacity of different oils with water is different. This mixing capacity of the oil in addition to its nature depends upon the method of shaking also (i.e.vigorous shaking or swirling).

The stability of an oil and water emulsion is increased by the addition of a suitable emulsifying agent such as soap solution. Soap contains sodium salt of long chain aliphatic carboxylic acids with the carboxyl group as the polar group, which decreases the interfacial surface tension between oil and water. Hence oil mixes with water and emulsification takes place. The concentration of soap required for complete emulsification is called optimum concentration. Any amount less or more than this optimum amount does not cause an effective stabilisation. In the presence of optimum amount of soap solution, oil in water emulsion is more stable and the separation of oil and water layers takes more time.

Material Required

Procedure
(i) Dissolve 1 g of soap/detergent in 10 mL of distilled water in a test tube with vigorous shaking and heat the content of the test tube if needed. Label it as ‘A’.
(ii) Take four test tubes. Mark these as B, C, D and E and to each of the test tubes, add 5 mL distilled water followed by 10 drops of mustard oil in test tube B, linseed oil in test tube C, castor oil in test tube D and machine oil in test tube E, respectively.
(iii) Shake test tube B vigorously for five minutes, keep it in a test tube stand and simultaneously start the stopwatch. Record the time taken for the separation of the two layers.
(iv) Repeat the same procedure with test tubes C, D and E and record the time for the separation of the layers in each case.
(v) Now add two drops of soap/detergent solution from test tube ‘A’ into each test tube (B, C, D and E). Shake each test tube for five minutes and record the time of separation of the layers in each case again.
(vi) Record your observations in a manner detailed in Table 1.1.

Table 1.1 : Emulsification of different oils by soap/detergent

Test tube specification Name of oil used for emulsification Time taken for the separation of layers
Without Soap/detergent With Soap/detergent
B
C
D
E

Precautions

(a) Add equal number of drops of a soap/detergent solution to all the test tubes.
(b) To minimise the error in recording the time required for the separation of layers in different systems, shake all the test tubes for identical time span.
(c) Start the stopwatch immediately after shaking is stopped and stop it immediately when the two layers separate.

Discussion Questions

(i) Name a reagent other than soap, which can be used as an emulsifying agent in the oil in water type emulsion.
(ii) Milk is said to be a stable emulsion. What provides stability to milk?
(iii) Can two miscible liquids form an emulsion?
(iv) Why do separation of layers of different oils forming an emulsion with water take different time?
(v) What are the points of similarity and dissimilarity among sol, gel and emulsion?
(vi) Suggest a test to distinguish between Oil in Water and Water in Oil type of emulsions.
(vii) Give some examples of emulsions that you come across in daily life.
(viii) Dettol forms an emulsion in water. How does this emulsion get stabilised?

9 thoughts on “5. Surface Chemistry

  1. Your note on adsorption and cooloid are so simple to under stand, that when i bring it infront of my students, they started to learn more and they themself analysis about the the surface chemistry and its important in day today life. it also help them to co relate with their nanoscince material.

  2. It’s a shame you don’t have a donate button!
    I’d definitely donate to this outstanding blog! I suppose for now i’ll
    settle for bookmarking and adding your RSS feed to my Google account.

    I look forward to fresh updates and will share this site with my Facebook group.
    Talk soon!

  3. Heya just wanted to give you a brief heads up and let you know a
    few of the pictures aren’t loading correctly.
    I’m not sure why but I think its a linking issue. I’ve tried
    it in two different browsers and both show the same results.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>